Structured computer-based training in the interpretation of neuroradiological images
نویسندگان
چکیده
Computer-based systems may be able to address a recognised need throughout the medical profession for a more structured approach to training. We describe a combined training system for neuroradiology, the MR Tutor that differs from previous approaches to computer-assisted training in radiology in that it provides case-based tuition whereby the system and user communicate in terms of a well-founded Image Description Language. The system implements a novel method of visualisation and interaction with a library of fully described cases utilising statistical models of similarity, typicality and disease categorisation of cases. We describe the rationale, knowledge representation and design of the system, and provide a formative evaluation of its usability and effectiveness.
منابع مشابه
Automatic Interpretation of UltraCam Imagery by Combination of Support Vector Machine and Knowledge-based Systems
With the development of digital sensors, an increasing number of high-resolution images are available. Interpretation of these images is not possible manually, which necessitates seeking for practical, fast and automatic solutions to solve the environmental and location-based management problems. The land cover classification using high-resolution imagery is a difficult process because of the c...
متن کاملCystoscopic Image Classification Based on Combining MLP and GA
In the past three decades, the use of smart methods in medical diagnostic systems has attracted the attention of many researchers. However, no smart activity has been provided in the field of medical image processing for diagnosis of bladder cancer through cystoscopy images despite the high prevalence in the world. In this paper, a multilayer neural network was applied to clas...
متن کاملIranian Dental Students’ Level of Knowledge Regarding the Interpretation of Radiographic Images of Oral Lesions: Is the Standard Training Sufficient?
Introdouction: Dentists need to be able to diagnose jaw lesions due to professional responsibilities to refer affected patients for expeditious treatment as needed. The objective of this study was to assess the knowledge of senior dental students in Qazvin University of Medical Sciences regarding the interpretation of radiographic images of oral lesions. The study took place in 2011–2012...
متن کاملNon-melanoma skin cancer diagnosis with a convolutional neural network
Background: The most common types of non-melanoma skin cancer are basal cell carcinoma (BCC), and squamous cell carcinoma (SCC). AKIEC -Actinic keratoses (Solar keratoses) and intraepithelial carcinoma (Bowen’s disease)- are common non-invasive precursors of SCC, which may progress to invasive SCC, if left untreated. Due to the importance of early detection in cancer treatment, this study aimed...
متن کاملFeature reduction of hyperspectral images: Discriminant analysis and the first principal component
When the number of training samples is limited, feature reduction plays an important role in classification of hyperspectral images. In this paper, we propose a supervised feature extraction method based on discriminant analysis (DA) which uses the first principal component (PC1) to weight the scatter matrices. The proposed method, called DA-PC1, copes with the small sample size problem and has...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of medical informatics
دوره 60 3 شماره
صفحات -
تاریخ انتشار 2000